

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

17CV53

(04 Marks)

(06 Marks)

- 6 a. List the assumptions made in slope stability analysis.
 - b. Calculate the factor of safety with respect to cohesion of a clay soil laid at a slope angle of 26.5° to a height of 10m, if $\phi = 10^{\circ}$, C = 25kN/m^2 and $\gamma = 19 \text{kN/m}^3$. What will be the critical height of the slope in this soil? For $\beta = 26.5^{\circ}$ and $\phi = 10^{\circ}$, S_n = 0.064. (04 Marks)
 - c. A cutting 8.5m deep is to be made in a cohesive soil whose shear strength increases with depth. The slope of the cutting in 2H:1V. The properties of the soil are effective cohesion = 30kN/m², Angle of internal friction = 20^{0} and Unit weight = 19kN/m³. Determine the FOS for a trial slip circle passing through the toe of the slope by method of slices. The centre of slip circle can be located by Fellenius directional angles. For $\beta = 26.6^{0}$, $\alpha_{A} = 25^{0}$ and $\alpha_{B} = 35^{0}$. (12 Marks)
- 7 a. With the help of sketch, explain effect of eccentric loading on bearing capacity of soil. (04 Marks)
 - b. Explain different modes of shear failure, with neat sketches.
 - c. A column carries a load of 1000kN. The soil is a dry sand weighing 19kN/m³ and having $\phi = 40^{\circ}$. A minimum factor of safety of 2.5 is required and Terzaghi's factors are required to be used N_r = 42, N_q = 21.
 - i) Find the size of square footing if placed at the ground surface.
 - ii) Find the size of square footing if placed at 1m below ground surface with water table at ground surface. Assume $\gamma_{sat} = 21 \text{kN/m}^3$. (10 Marks)
- 8 a. Explain the procedure for determining the ultimate load capacity of soil by plate load test with a neat sketch. List its limitations. (08 Marks)
 - b. Calculate the net ultimate bearing capacity of a rectangular footing $1.8m \times 3.6m$ in plan founded at a depth of 1.6m below the ground surface. The load on the footing acts at an angle of 16° to the vertical and it is eccentric in the direction of width by 15cm. The unit weight of soil is $18kN/m^3$. The shear parameters are C' = $15kN/m^2$ and $\phi' = 30^{\circ}$. Natural water table is at a depth of 2m below the ground surface. Use BIS recommendations as contained in IS6403 – 1981. (12 Marks)
- 9 a. Explain in detail classification of piles based on material and function. (10 Marks)
 - b. A group of 9 piles, 10m long is used as a foundation for a bridge pier. The piles used are 30cm diameter with centre to centre spacing of 0.9m. The subsoil consists of clay with unconfined compressive strength of 15kN/m². Determine the efficiency neglecting the bearing action. Take adhesion factor as 0.9. (10 Marks)
- 10 a. With the help of sketch, explain : i) Negative skin friction ii) Under reamed piles. (10 Marks)
 - b. A group of 9 piles arranged in a square pattern with diameter and length of each pile as 25cm and 10m respectively, is used as a foundation in soft clay deposit. Taking the unconfined compressive strength of clay as 120kN/m² and the pile spacing as 100cm center to centre. Find the capacity of the group , Assuming bearing capacity factor N_C = 9 , Adhesion factor = 0.75 and FOS = 2.5. (10 Marks)

2 of 2